Restes modulo p

Énoncé

Le but de cet exercice est d'étudier les restes modulo p (p entier strictement supérieur à 1) des suites $(u_n)_{n\in\mathbb{N}}$ définies par : $u_n = an + b$, a et b étant deux entiers naturels donnés.

1. Construire une feuille de calcul donnant les restes modulo 20 des 20 premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_n=12n+5$.

Appeler l'examinateur

- 2. Adapter la feuille de calcul de façon à obtenir les restes modulo p des 20 premiers termes de la suite définie par $u_n = an + b, n \in N$, de telle manière qu'on puisse modifier les valeurs de a, b et p. Notez sur votre feuille les restes obtenus dans les cas particuliers suivants :
 - (a) p = 20 et $u_n = 5n 3$;
 - (b) p = 7 et $u_n = 5n 3$.

Quelle conjecture peut-on formuler quant aux suites formées par ces restes euclidiens?

Appeler l'examinateur pour vérifier la conjecture émise

- 3. Démonstration de la conjecture :
 - (a) Montrer que, parmi les nombres $u_0, u_1, ..., u_p$, il existe deux nombres ayant le même reste dans la division euclidienne par p, pour p entier naturel non nul.
 - (b) Soient n_0 et $n_0 + T$ les rangs de ces deux nombres $(T \neq 0)$. Montrer que aT est un multiple de p.
 - (c) En déduire que pour tout entier naturel k, u_{T+k} et u_k ont le même reste dans la division euclidienne par p.
 - (d) Démontrer alors la conjecture.

Production demandée

- Feuille de calcul correspondant aux diverses suites.
- Les démonstrations de la question 3.