Section plane d'un tétraèdre, optimisation d'une distance

Énoncé

Dans l'espace rapporté à un repère orthonormal $(O; \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$, on définit les points A(1,0,0), B(0,1,0) et C(0,0,1) et le point I milieu du segment [AB].

Partie expérimentale

- 1. (a) À l'aide d'un logiciel de géométrie dans l'espace, représenter le tétraèdre OABC et le point I.
 - (b) Pour un point M du segment [AC], on définit le plan $\mathscr P$ passant par le point I et orthogonal à la doite (IM). Tracer la section du tétraèdre OABC par le plan $\mathscr P$.
 - (c) Le plan \mathscr{P} coupe la droite (OB) en un point N. Construire le point N et tracer le segment [MN].

Appeler l'examinateur pour lui présenter la figure construite.

2. Étudier à l'aide du logiciel, les variations de la longueur MN et conjecturer la position du point M, sur le segment [AC], telle que cette longueur soit minimale. Quelle est, d'après le logiciel, cette longueur minimale?

Appeler l'examinateur pour lui présenter les observations faites et les résultats obtenus.

Démonstration

On définit le réel $t = \frac{AM}{AC}$ et on admet que les coordonnées des points M et N sont respectivement M(1-t,0,t) et N(0,t,0).

3. Calculer la longueur MN en fonction de t.

Appeler l'examinateur pour lui expliquer la méthode prévue pour déterminer le minimum de cette longueur.

- 4. Déterminer la valeur de t pour laquelle cette longueur est minimale.
- 5. Donner la valeur minimale prise par la longueur MN.

Production demandée

- Réalisation d'une figure à l'aide d'un logiciel de géométrie dynamique;
- Présentation orale, à partir de l'écran, des conjectures;
- Solution argumentée de la question 4.